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A theoretical approach has been undertaken in order to model the thermodynamic equilibrium of a 3D
vesicle adhering to a flat substrate. The vesicle is treated in a canonical description with a fixed number of sites.
A finite number of these sites are occupied by mobile ligands that are capable of interacting with a discrete
number of receptors immobilized on the substrate. Explicit consideration of the bending energy of the vesicle
shape has shown that the problem of the vesicle shape can be decoupled from the determination of the
optimum allocation of ligands over the vesicle. The allocation of bound and free ligands in the vesicle can be
determined as a function of the size of the contact zone, the ligand-receptor binding strength, and the concen-
tration of the system constituents. Several approximate solutions for different regions of system parameters are
determined and in particular, the distinction between receptor- and ligand-dominated equilibria is found to be
important. The crossover between these two types of solutions is found to occur at a critical size of the contact
zone. The presented approach enables the calculation of the effective adhesion strength of the vesicle and thus
permits meaningful comparisons with relevant experiments as well as connecting the presented model with the
proven success of the continuum approach for modeling the shapes of adhering vesicles. The behavior of the
effective adhesion strength is analyzed in detail and several approximate expressions for it are given.
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I. INTRODUCTION

In the past two decades, considerable effort has been in-
vested in understanding the behavior of vesicles consisting
of phospholipid bilayers binding to flat substrates. One of the
reasons for this development is the fact that vesicles are
regularly used as well-defined and controllable model sys-
tems for the far more complex process of cell adhesionf1g.
Indeed, as cell adhesion plays a central role in key dynamic
biological processes such as embryo development, immune
response, and cancer metastasis, the desire to understand it is
hardly surprising.

As adhesion is an important trigger of cell activityf2g,
nonspecific adhesion controlled by an effective potential be-
tween the cell walls must be avoided. Instead, as demon-
strated by cell sorting experiments, the highly selective
mechanism of cell interactions is based on complementarities
between different types of adhesive molecules present on the
cell surfacef3g. The surfacereceptorsare proteins embedded
in the lipid bilayer, which constitutes the basic matrix of the
outer surface of the cell. These receptors must bind to par-
ticular molecular groups of the target cell surface, known as
ligands, with interaction energies typically in the range of
5kBT to 20kBT. Given that the presence of only 104 specific
adhesive molecules on the cell surface is sufficient for the
normal functioning of the cell, the efficiency of the cell ad-
hesion mechanism is indeed stunning. The receptors and
ligands are hidden within a glycocalix, a brushlike macromo-
lecular film rich in carbohydrates that covers the cell surface
with a thickness of up to tens of nanometersf3g. The role of

this layer is to control precisely the strength of the nonspe-
cific interactions. In the absence of compatible ligands, every
embedded receptor contributes to the repelling glycocalix.

Different aspects of bioadhesion have been studied with
the help of synthetic models that contain the absolute mini-
mum number of ingredients necessary to mimic cell adhe-
sion f4g. In this respect, various cell models consisting of a
vesicle interacting with a substrate have been developed over
the last few yearsf5–7g. In all of these models, ligands in-
corporated into the vesicle membrane are able to bind to
receptors immobilized on the substrate. Lipid-coupled poly-
ethyleneglycol moleculesslipopolymersd are used to mimic
the cell glycocalix. In all cases, prior to the formation of
ligand-receptor bonds, the vesicle settles above the substrate
at a distance that is governed by the effective potential acting
between the membrane matrix and the substrate. The part of
the vesicle membrane that becomes parallel to the substrate
in this way is known as the initial contact zone. Due to the
fact that, on most occasions, the substrate has been rendered
passive by an inert coating and repulsive lipopolymers have
been embedded in the vesicle, the part of the membrane in
the contact zone is usually only weakly adhered to the sub-
strate and still high enough above the substrate to exhibit
strong fluctuations.

The adhesion process associated with the specific biocom-
patible molecules that follows the initial settling of the
vesicle is found to phase segregate the ligand-receptor pairs.
Two types of adhesionf8g are observed within the contact
zone. The vesicle membrane either is locally trapped in
strong adhesion complexesspatchesd or remains in the initial
stage of weak adhesion. In the first scenario, the undulations
of the membrane are almost totally suppressed whereas, in
the remainder of the membrane, fluctuations are still observ-
able. The growth of the patches is believed to be determined*Corresponding author. Electronic address: asmith@ph.tum.de
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by the balance between the osmotic pressures of the li-
popolymers that must be expelled from the growing patch
and the ligands that contribute to its growth. Empirically, it is
only when the formation of patches dominates the overall
effective potential that the patches grow beyond the initially
established contact zone and induce a first order shape tran-
sition f5,6g. The qualitative explanation of the results ob-
served in these model systems is, however, far from trivial.
Indeed, in order to arrive at a satisfactory interpretation of
the observed behavior, significant theoretical efforts must be
made to understand several aspects of the physics of vesicle
adhesion.

An important prerequisite to any theory of vesicle adhe-
sion is naturally an acceptable description of free vesicles.
This was provided in the context of a minimal continuum
modelf9g where the predicted free vesicle shapes were later
confirmed by experimentf10g. It was shown in this work that
any deformation of a vesicle is constrained by a constant
total area and volume. Subsequent advances concerning
vesicles bound in a contact potentialf11g gave rise to the
universal boundary condition which shows that, at the point
of contact with the substrate, the vesicle membrane is closing
a zero contact angle but with a finite curvature. On the basis
of linear extrapolation of the vesicle shape in the vicinity of
the substrate, a model connecting the tension in a vesicle
with the effective adhesion strength has also been developed
f5g and used for the analysis of the contact zone in adhesion
experimentsf6g. The continuum approach was also later ex-
tended to include the influence of gravityf12g to account for
the fact that the inner solution of a vesicle is usually associ-
ated with a higher mass density than the outer buffer. Finally,
in a self-consistent approach, the connection between the
thermal fluctuations, the effective tension, and the adhesion
strength was clarifiedf13g.

It is widely accepted that the continuum models are very
successful in explaining the stationary stable shapes of
vesicles on the mesoscopic scale. However, by definition,
they are unable to account for the discrete nature of the
vesicle-substrate interaction, nor have they included the de-
tails of the vesicle composition which can be essential for the
understanding of the adhesion processes.

Several theoretical models that take the discrete nature of
specific binding into account have been developed over time.
The thermodynamic considerations of Bell and co-workers
f1,14,15g have had a major impact on the understanding of
the origins of cell to cell adhesion. Their models were pri-
marily concerned with the balance between the repulsive po-
tentials accorded to the glycocalix, the binding enthalpy and
the mixing entropy. Somewhat later, Zuckerman and Bruin-
sma f16g included membrane-mediated attractions and
mapped the statistical model for ligand-receptor interactions
to a Coulomb plasma. As a result, they found the ideal mix-
ing state assumed by Bell and co-workers to be unstable
against the migration of ligands to the rim of the adhesion
plate. They also predicted the enhancement of the membrane
adhesion due to fluctuations.

The interplay between lateral phase separation and adhe-
sion of an infinite flat membrane was first considered by
Lipowsky and co-workersf17,18g. In the case of vesicles,
Komura and Andelman evaluated the mean separation dis-

tances between the membrane and the substrate as well as the
changes in the height profile, within the contact zone, from
patchlike strong adhesion to weak adhesionf19g. Different
scenarios for the dynamics of the adhesion process were
identified by de Gennes and co-workers and found to depend
on the mobility of ligands and receptors as well as on the
reaction time associated with bindingf20,21g. Both the stat-
ics and the dynamics of colloids adhering specifically to the
cell surface have been studied by van Effenterre and Roux
though a simple thermodynamic modelf22g. Very recently,
Coombset al.have extended previous theoretical approaches
f14,15g to encompass the equilibrium thermodynamics of
cell adhesion mediated by two ligand-receptor pairs of dif-
ferent lengthf23g.

In summary, by accounting for the many factors elabo-
rated in the previous section, a good phenomenological cov-
erage of the problem of vesicle adhesion has now been
achieved. Unfortunately, however, the results of the theories
are often difficult to apply to the actual interpretation of ex-
perimental data. The aim of the current paper is therefore to
partially rectify this situation. To this end, we attempt to
provide a set of self-consistent tools that can be directly ap-
plied to measured results. In doing so we hope to start to
bridge the gap between experimental and theoretical treat-
ments of vesicle adhesion.

In order to achieve our stated aim, we have simplified the
problem of vesicle adhesion to its bare minimum. That is, we
consider only the mixing entropy of ligands in the vesicle,
the enthalpy of ligand-receptor binding, and the bending en-
ergy of the entire vesicle shape. The vesicle is treated in a
canonical description with a fixed finite number of sites. It
will be demonstrated that the finiteness of the system has
important repercussions on the behavior of the number of
bound ligands and results in two types of equilibria distin-
guished by the relative concentrations of the ligands and re-
ceptors. Furthermore, rather than being restricted to low con-
centrations of the system constituents, such an approach is
suitable for any choice of ligand density in the vesicle and
any receptor density on the substrate. We will show that the
problem of determining the shape can usually be decoupled
from the determination of the number of formed ligand-
receptor bonds. We also provide simple approximate analyti-
cal solutions, relating the binding energy of a ligand-receptor
pair, and their densities in the vesicle and on the substrate,
respectively, to the number of formed bonds in the contact
zone. Particular care has been given to calculations of the
effective adhesion energy which is often the most important
quantity resulting from equivalent experiments.

II. THE BASIC ADHESION MODEL

The vesicle surface is initially separated into a region par-
allel to the substratesthe contact zoned and a region consist-
ing of the remaining part of the vesicle. We allow the inter-
action between the ligands incorporated into the vesicle and
the receptors immobilized on the substrate to take place only
within the contact zone. Nevertheless, the ligands in the con-
tact zone are able to exchange with those in the free part of
the vesicle. The translational degrees of freedom of the
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ligands are taken into account by counting the number of
microstatessconformations in which the ligands can be dis-
tributed over the surface of the vesicled and finding the most
probable macroscopic state. The calculation thus results in
the number of bound and free ligands in the two regions of
the vesicle at equilibrium.

The notation used for the presentation of the model is
presented in Table I. The total number of sites is obtained by
dividing the total vesicle area by the area that a single ligand
occupies on the surface of the vesiclessize of one sited.
Within the model, the receptors are of the same size as the
ligands. The value for the surface coverage reflects the extent
of surface coveragese.g., for the surface is fully covered,
while for , there are no receptors on the surfaced. The total
number of receptors in the contact zone is equal to .

A schematic view of a model vesicle-substrate system is
presented in Fig. 1, where the color of a given site reflects
whether it contains a ligand or a receptor, or is an empty site.
In addition, the bond is formed if, within the contact zone, a
site containing a ligand is positioned above a site occupied
by a receptor.

A. Minimizing the free energy

For a given temperaturesTd, the free energy of the system
is given byF=U−TS, whereU is the internal energy andS is
the entropy of the vesicle-substrate system. In the context of
the previously outlined model, the internal energy of the sys-
tem is the sum over all bonds formed in the contact zone:

U = − NbEa. s1d

Every formed bond contributes with the adhesion energyEa,
which is a measure of the binding strength. The binding
strength is a positive quantity and is expressed in units of
kBT skB is the Boltzmann constantd. The negative sign thus
indicates that bond formation is favorable in terms of the
total free energy.

The entropy is calculated by counting all possible confor-
mationssVd of the positions of the ligands in the vesicle.
Under the previously described assumptions,V is the num-
ber of combinations in which one can placeNt−Nb−Nf
ligands in the free part of the vesicle onSt−Sc positions,Nf
free ligands onScs1−rrd sites not occupied by receptors, and
Nb bound ligands onrrSc receptor sites:

V = S St − Sc

Nt − Nb − Nf
DSScs1 − rrd

Nf
DSrrSc

Nb
D . s2d

The entropy is given byS=kBT ln V and can be calculated
with the use of the Stirling formula for factorials of large
numbers. The resulting expression is then analogous to the
standard mixing entropy termf24g, but due to its length will
not be presented here.

Minimizing the free energyF=U−TS with respect toNb
and Nf should provide the ideal fraction of bound and free
ligand molecules. The first important relation resulting from
the minimization can be cast in the form of the “density
equation”

Nt − Nf − Nb

St − Sc
=

Nf

Scs1 − rrd
. s3d

The left side of this equation is the density of ligands in the
free part of the vesicle. Similarly, the right hand side is the
density of free ligands in the adhesion zone over sites not
occupied by receptors. As the free energy of a ligand in the
upper part of the vesicle is, within the current model, the
same as the free energy of an unbound ligand in the contact
zone, a violation of the density equations3d would lead to
unequal lateral pressures of free ligands inside and outside
the contact zone, and hence to the loss of a stationary solu-
tion.

The second important relation resulting from the minimi-
zation shows the influence of the binding strength on the
allocation of bound and free ligands within the contact zone:

s1 − rrdSc

Nf
− 1 =eEaSrrSc

Nb
− 1D . s4d

On this occasion, it is the densities of the free and bound
ligands within the contact zonesweighed by the Boltzmann
factor of each stated which are being equilibrated. Solving

TABLE I. The notation.

St total number of sites in the vesicle

Sc number of sites forming the contact zone of the
vesicle

rr density of receptors on the substrate

Nt total number of ligands in a vesicle

Nb number of ligands that are in the contact zone and
bound to receptors

Nf number of ligands that are in the contact zone and
free

Nfree=Nt−Nb number of free ligands in the vesicle

FIG. 1. A cross section of a model system depicting the system
constituents. There are a total ofNt gray sites in the vesicle. The
contact zoneSc is shown as the part of the vesicle at zero distance
from the substrate. The black sites appear with the densityrr, which
results inrrSc receptors in the contact zone. If, within the contact
zone, a gray site is on top of a black site, it contributes toNb by
forming a bond. A gray site over a white site indicates a free ligand
in the contact zone that can be associated withNf.
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Eqs.s3d and s4d simultaneously forNf andNb results in the
optimum allocation of ligands in the vesicle, for a given size
of the contact zone.

Further inspection of the free energy reveals that the den-
sity equations3d can be obtained directly by minimizing the
free energy with respect to the size of the contact zone. As a
result, although the free energy depends on three variables,
one of the equations emerging from the minimization of the
free energy with respect to these three variables is linearly
dependent on the remaining two. Moreover, it is easy to
show that the free energy is a decreasing function ofSc,
leading to a boundary minimum with respect to the same
variable. In order to reach the thermodynamic equilibrium,
the vesicle will thus maximize its area of contact with the
substrate. However, the size of the contact zone is restricted
by the volume and area constraints and the bending energy of
the vesicle. Furthermore, the ratio between the bending en-
ergy and the free energy calculated herein scales inversely
with the total number of sites in the vesiclesStd, which is
usually a very large number. Hence, the magnitude of the
bending energy term is very small in comparison with the
internal energy and the entropy, and can generally be omitted
from the calculation. The only exception is when the shape
of the vesicle approaches the shape of a spherical cap. Due to
the constraints on the total volume and area of the vesicle, it
is this shape that limits the size of the contact zonef11g. For
a spherical cap, a well-defined contact angle is formed with
the substrate. This causes the bending energy to diverge and

induces a stable boundary minimum in the total free energy
of the vesicle adhering to the substrate. Thus in the thermo-
dynamic equilibrium, the vesicle shape is always that of the
spherical cap, with an optimum number of bound and free
ligands in the contact zone. Depending on the coverage den-
sity and the binding affinity of the ligand-receptor pair, the
density of bonds can vary from very low to very high.

If, for some reason, the adhesion process is very slow, the
free energy will relax with respect to the number of ligands
much faster than with respect to the size of the contact zone.
Hence, a constrained equilibrium, where the vesicle shape is
not that of a spherical cap, can be experimentally observed.
In that case, the shape of the vesicle can in principle be
determined with the use of continuous modelsf11g, where
the free energy must be minimized with respect to the given
size of the contact zone. The number of bound ligands cor-
responding to this size of the contact zone can be determined
as described in following sections.

B. The number of ligands in the contact zone

In order to determine the allocation of ligands over the
vesicle, the system consisting of Eqs.s3d and s4d can be
solved analytically, which results in two sets of solutions for
Nb andNf. However, there is only one physically relevant set
from which we present the resulting allocation function for
the number of bound ligands:

Nb =
Nt + rrSc

2
+

St

2seEa − 1d
−

Îe2EasNt − rrScd2 − 2eEafNt
2 + rr

2Sc
2 − sNt + rrScdStg + sNt + rrSc − Std2

2seEa − 1d
. s5d

The number of free ligands within the contact zonesNfd can
be easily obtained by substitution of Eq.s5d into the density
equations3d. The total number of free ligands in the vesicle
is simply Nfree=Nt−Nb.

1. Limiting behaviors

If there is no interaction between the ligand and the re-
ceptor, i.e.,Ea=0, the ligands are uniformly allocated over
the vesicle. Hence the number of bound and free ligands in
the contact zone is scaled by the number of sites containing

receptors and the number of empty sites, respectivelysfirst
column in Table IId. As the binding strength increases, all
allocation functions exhibit considerable deviations from
their values atEa=0. However, the allocations reach their
saturation values, characteristic for the limit ofEa→` ssee
columns 2 and 3 in Table IId surprisingly quickly, typically at
binding strengths between 10kBT and 15kBT. For large bind-
ing strengths, the allocation functions are limited by the con-
centrations of the vesicle and substrate constituents. If there
are more ligands available than receptors in the contact zone
sNt.rrScd, all receptors will be boundssee the second col-
umn in Table IId. If, on the other hand, the total number of
receptors in the contact zone is larger than the total number
of ligands in the vesiclesrrSc.Ntd, all of the ligands will be
boundssee the last column in Table IId. Importantly, which
of the two limits is applicable to a certain composition of the
vesicle and the substrate will depend on the chosen size of
the contact zoneSc. Actually, there is a critical size of the
contact zoneSc

* for which the number of ligands in the
vesicle is same as the number of receptors in the contact
zone:

TABLE II. The limits of the allocation functions.

Ea=0

Ea→`

Sc,Sc
* Sc.Sc

*

Nb rrScNt/St rrSc Nt

Nf s1−rrdScNt/St Scs1−rrdsNt−rrScd/ sSt−rrScd 0

Nfree sSt−rrScdNt/St Nt−rrSc 0
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Sc
* =

Nt

rr
.

It is for this size of the contact zone that the two limits at
Ea→` become equivalent.

2. Overall behavior

The existence of two limits for the number of ligands
inside and outside the contact zone whenEa→` strongly
affects the behavior of the allocation functions. In particular,
if there are more ligands in the system than receptorssNt

.rrScd, the balance of the system entropy and enthalpy will
be dominated by the lack of receptors for any given binding
strengthEa. This situation will be referred to as areceptor-
dominated equilibrium. On the other hand, the presence of
more receptors than ligands leads to a stable solution that is
limited by the total number of ligands on the vesicle surface
and will result in a so-calledligand-dominated equilibrium.

The transition from one class of equilibria to the other can
be obviously achieved by changing the osmotic conditions or
the protein contributions in the system, or by inducing a
detachment process. However, ifNt and rr are chosensre-
sulting in a particularSc

*d, andSc is fixed, the only remaining
parameter is the ligand-receptor binding strengthEa. Specifi-
cally, if Sc,Sc

* , and one plots the allocation functions against
Ea, each curve will correspond to a set of receptor-dominated
equilibria sleft panel in Fig. 2d. In the case ofSc.Sc

* the
system adopts one of the ligand-dominated equilibriasright
panel in Fig. 2d.

It should also be expected that the equilibrium of the sys-
tem will be influenced considerably by the strength of the
ligand-receptor binding. Inspection of Fig. 2 shows that at
small binding strengths, the number of bound ligands in the
vesicle is smaller than the number of free onessNb,Nfreed.
As the strength increases, the majority of ligands will be-
come bound to the receptors. This is a direct consequence of
the fact that the total number of ligands in the vesicle is
finite. The characteristic binding strength at which the num-
ber of bound ligands begins to exceed that of free ligands in
the vesicle can be found by solvingNfree=Nb=Nt /2 which
results in

Ea = ln
2St − Nt − 2rrSc

2rrSc − Nt
. s6d

The crossing will occur as long asrrSc.Nt /2. At rrSc
,Nt /2 the expression for the number of bound ligands satu-
rates at a value below the limit for the total number of free
ligands in the vesicle.

For coverages of the substrate less thanrr =0.5, the allo-
cation function for bound moleculessNbd intersects that for
free receptors in the contact zonesNfd. By solving Nf =Nb,
the following crossover binding strength is obtained:

Ea = ln
Scs1 − rrdfSt − Nt + s1 − 2rrdScg

rrScfSt + s1 − 2rrdScg − NtScs1 − rrd
. s7d

This crossover vanishes atrr =0.5 when, due to the equipar-
tition of ligands imposed by the density equations3d, Nf
=Nb at Ea=0. Furthermore, if the coverage is very low, the

expression for the number of bound ligands saturates below
that for the number of free ligands in the contact zone and
the crossing does not occur for any value ofEa. In this case,
the concentration of free ligands in the contact zone is much
larger than the concentration of bound ones.

Some transitionary behavior of the allocation functions
sand of other quantities derived by the use of allocation func-
tionsd should be expected forSc=Sc

* . Due to the geometrical
constraint on the maximal size of the contact zone for a
given total area of the vesicle, such transitions should disap-
pear whenSc

* .0.5St as the system always relaxes into a
receptor-dominated equilibrium. The analysis of such a tran-
sition, the behavioral regimes of the allocation functions, and
the development of several useful approximate relations is
given in the Appendix.

III. THE EFFECTIVE ADHESION STRENGTH

Vesicle adhesion is often regarded as a wetting phenom-
enon where the spreading pressure of a vesicle is determined

FIG. 2. The allocations in the contact zone of boundsfull lined
and free ligandssshort dashed lined are presented together with the
total number of free ligands in the vesicleslong dashed lined as a
function of the binding strengthEa. In both panels, the case of a
vesicle that has 85% of the volume of a sphere with the same
surface areasreduced volumev=0.85d is considered. In thermody-
namic equilibrium, this leads to a spherical cap with a contact zone
that comprises 28% of the total vesicle surface areasSc=0.28Std.
Furthermore, if the diameter of the vesicle is 10mm and the ligand
incorporated has the gyration radius of 3.5 nmsas does the com-
monly used sialyl-LewisX-glycosphingolipidd then the total number
of sitesSt in the vesicle is about 108. If the vesicles are prepared
with the number concentration of about 10−3 of the ligand with
respect to the lipid, 10% of the vesicle surface will be covered by
ligands sNt=0.1Std. The coverage of the substrate by receptors is
chosen to besad 20% srr =0.2d so a set of receptor-dominated equi-
libria is obtained andsbd 80% srr =0.8d which results in a set of
ligand-dominated equilibria. The coverage is indicated directly be-
low the graphs whereas the other parameters can be found in the
bottom line of the figure.
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as the work of the system to induce changes in the contact
area with the substrate. Several experimental studies have
reported measurements of the adhesion strength of specifi-
cally adhered vesicles based on the usage of the Young’s law
f5,6g. Moreover, previous theoretical investigations have
shown that the shape of the vesicle can be understood by
adhesion in a continuousscontactd potential f11g. In these
models, the average adhesion strength is constant, indepen-
dent ofSc, or given externally. To make a link between the
present model and the previously used approaches, it is nec-
essary to calculate the effective adhesive potentialsWd re-
sulting from numerous local bindings. Within the canonical
approach undertaken herein, the average adhesion strength
becomes a function of the size of the contact zone, with a
functional dependence that can be determined by calculating:

W; U −
1

a

]F

]Sc
U

rr

;
v

a
. s8d

Herea is the area of the unit cell determined by the size of a
ligand. For a chosen value ofSc, it is found that:

v = rrSln
s1 − rrdSc − Nf

s1 − rrdSc
− ln

rrSc − Nb

rrSc
D . s9d

To obtainv for a given size of the contact zone,Nb andNf
must be calculated from Eqs.s3d–s5d. The first term on the
right hand side of Eq.s9d is the natural logarithm of the
density of ligand-free sites in the part of the contact zone
unoccupied by receptors, whereas the second term is the
logarithm of the density of ligand-free sites in the part of the
contact zone occupied by receptors. As the chemical poten-
tial is the logarithm of a density,v is the result of an imbal-
ance between two chemical potentials ofempty sites,
weighed by the density of receptors.

The dependence of the effective adhesion strengthsWd on
the ligand sizesad results inv expressed in units ofkbT. For
a ligand with a gyration radius of 3.5 nm,v=1 leads toW of
the order of 10−5 N/m. Moreover, the conversion to adhe-
sion strengthsw, as employed in continuous models
f11–13,26,27g, can be achieved by the relationw=vkbT/k.
For a standard bending rigidity of the membranesk
=100kBTd and St=107, this conversion would lead tow
<104 v.

A. Limiting behavior and the dependence on the binding
strength of the ligand-receptor pair

Several important properties ofv are inherent from the
allocation functions and are a result of the existence of the
two sorts of equilibriasdominated by either ligands or recep-
torsd and their limits whenEa→`. However, for both types
of equilibria, v is vanishing asEarrNt /St as Ea→0. In the
receptor-dominated equilibriasSc,Sc

*d, a diverging linear re-
gime spresented in the left panel of Fig. 3d is found to domi-
nate the behavior ofv:

v < rrEa + rr ln
Nt

2sSt − Ntd
for Ea → `. s10d

In the ligand-dominated equilibriasSc.Sc
*d inspection of the

right panel in Fig. 3 reveals a rapid increase ofv followed by
convergence to a finite value:

v < rr ln
rrSc

rrSc − Nt
for Ea → `. s11d

After a certain binding strength, all of the ligands in the
vesicle become bound. Hence, in this regime, further increas-
ing the ligand-receptor binding strength does not influence
the average adhesion strength.

B. Dependence on the size of the adhesion plate

Detaching the vesicle by means of local force application,
flow, or the insertion of antibodies is usually associated with
changes in the size of the contact zone. Hence, the work on
the vesicle performed by any of these means can be evalu-
ated from the change in the effective adhesion strength.
Thus, it is particularly important to understand the depen-
dence of the adhesion strength on the size of the contact zone
presented in Fig. 4.

It is easy to show thatv is a monotonically decreasing
function of Sc independently of the choice of the other pa-
rameters. This is a consequence of the fact that the density of
bound ligands never increases in response to an increase in
the size of the contact zonesat a given coverage, binding
strength, and total number of ligands in the vesicled. Instead,
the large changes inv are a consequence of the changes of
the derivative of the density with respect toSc. When the
allocation function of bound ligands reaches its limiting val-
ues, imposed by the composition of the vesicle and the sub-
strate, the density of bonds is independent of the size of the
contact zone. The maximum value in the effective adhesion

FIG. 3. Effective adhesion strength as a function of the ligand-
receptor binding strength for different coverage densitiessnumbers
indicated next to curvesd. Left: Diverging of the effective adhesion
strength characteristic for the receptor-dominated equilibria. The
full solution slinesd and the asymptote from Eq.s10d sdashed linesd
are shown. Right: The saturation of the average adhesion strength is
characteristic for ligand-dominated equilibria. The effective adhe-
sion strength for this type of equilibrium converges to values given
by Eq. s11d.
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strengthsv0d is reached atSc=0 and is calculated to be

v0 = rr lnFseEa − 1d
Nt

St
+ 1G . s12d

Interestingly, if Eq.s12d is plotted as a function ofEa, then
excellent overlap is obtained with the curves presented in
Fig. 3 for small Ea for both types of equilibriasdata not
presentedd. Furthermore, for largeEa and in the receptor-
dominated equilibriasleft panel in Fig. 3d, v0 increases lin-
early with the same slope as predicted by the asymptote Eq.
s10d, but with a somewhat underestimated offset ofv0. How-
ever, at low coverage, for choices of parameters resulting in
receptor-dominated equilibria,v0 provides a very good ap-
proximation to the full solution ofv over the entire range of
Ea.

It is important to notice that, when the adhesion strength
is presented as a function of the size of the contact zonesFig.
4d, an inflection point occurs atSc

* =Nt /rr. In the region re-
sulting in ligand-dominated equilibria, Eq.s11d sshown with
a dotted line in Fig. 4d can be used to approximate the real
solution for v. An analogous approximate relation is deter-
mined in the region producing receptor-dominated equilibria
whereSc,Sc

* :

v > v0 − rr ln
Nt

Nt − rrSc
. s13d

The comparison of Eq.s13d sshort dotted linesd with the real
solution is given in Fig. 4. For largeEa, both Eq.s13d and
Eq. s11d are found to be very useful, as shown on the left
panel in Fig. 4. In the intermediate range of binding strengths

smiddle panel of Fig. 4d, the region around the inflection
point is badly reproduced by the approximate solutions. The
width of this region depends entirely on the binding strength
Ea. However, the position of the inflection point can be regu-
lated by changing the density of ligands in the vesicle and
the receptors on the surface. Both an increase ofNt and a
decrease ofrr are capable of translatingSc

* to larger values.
Therefore, for such intermediate values ofEa, Eq. s13d pro-
vides a good approximation for small sizes of the contact
zone. Conversely, a decrease ofNt or an increase ofrr shifts
Sc

* to smaller values. This permits the use of Eq.s10d at large
sizes of the contact zone.

For weak ligand-receptor pairs, the density of ligands in
the contact zone is almost constant for any size of the contact
zone andv experiences only very small changes. Though
neither Eq.s10d nor Eq.s13d is applicable in this range ofEa,
the effective adhesion strength can be approximated withv0
as shown in the right panel of Fig. 4.

IV. DISCUSSION AND SUMMARY

The aim of this work was to produce a tool simple enough
to be manageable and applicable to experiments while at the
same time retaining sufficient sophistication to account for
the most important contributions to the free energy in the
adhesion process of vesicles. Hence, we have calculated the
thermodynamic equilibrium for a vesicle containing ligands
capable of specific binding to receptors on the substrate. Al-
though this work is, in spirit, based on the same physical
ideas as those employed in the well known studies of Bell
and co-workersf14,15g, we have succeeded in identifying
and characterizing, in an unencumbered manner, some im-
portant regimes in vesicle adhesion driven by specific bind-
ers.

The results of the calculations show that the choice of the
statistical ensemble is an important issue. In particular, the
experimental reality is such that the contact zone of the
vesicle with the substrate is usually relatively large, so that
the final number of receptors in the contact zone is at least
comparable to the total number of ligands in the vesicle
f6,25g. The large adhesion patchessof the order ofmm2d
obtained in these experiments indicate the formation of nu-
merous ligand-receptor bonds. However, the ligands partici-
pating in these bonds have had to diffuse from the free part
of the vesicleshence the observation of diffusion-limited ad-
hesiond. As the experiments are performed with a constant
total number of ligands in the vesicle, the concentration of
ligands in the upper part of the vesicle has therefore had to
undergo considerable reduction upon adhesion. Under these
circumstances, treating the adhesion in a grand canonical
model where the ligands are coupled to a bath of constant
chemical potential is not correct. Rather, a canonical statisti-
cal ensemble should be imposed on the vesicles. Regardless
of the parametrization of the canonical ensemble, the condi-
tion of thermal equilibrium dictates that the chemical poten-
tial of the ligands in the contact zone and in the free part of
the vesicle are equilibrated. The entropic cost for depletion in
one region is balanced by the gain in the internal energy in
the other region. Even if a given molecule is in the region of

FIG. 4. Effective adhesion strength as a function of the size of
the contact zone. Due to geometrical constraints, the size of the
contact zone is restricted to half of the total vesicle area. The region
shaded in gray is depicting the region characteristic for receptor-
dominated equilibria, whereas the region of parameters resulting in
ligand-dominated equilibria is shown with a white background.
Left: Nonlinear behavior with a crossover atSc

* described with ap-
proximate solutions from Eq.s10d sdotted linesd and Eq.s13d sshort
dashed linesd characterize thev for Ea Middle: For intermediate
binding strengths of the ligand-receptor pair, agreement with the
approximate solutions is obtained only in some parts of the curves.
These parts are imposed by the coverage density of the substrate.
Right: For low binding strengths, the approximate solutions are not
valid. The effective adhesion strength is a slowly varying function
and its magnitude is given by Eq.s12d, along the whole range of
sizes of the contact zone.
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increased density, this molecule has on average, no incentive
no penetrate the depleted region. Hence, differences in den-
sities between the two regions cannot be directly interpreted
as a lateral osmotic pressure. Such pressure would arise from
unbalanced chemical potentials and would be contrary to the
equilibrium condition.

A direct consequence of the canonical treatment of vesicle
adhesion is the identification of two types of equilibria domi-
nated by the contribution of ligands and receptors, respec-
tively. When the number of receptors in the applicable con-
tact zone is the same as the total number of ligands in the
vesicle, the system undergoes a crossover between the two
types of equilibria. The existence of these two types of equi-
libria is a result of the finite reservoirs of ligands and recep-
tors in the system and has implications not only for the allo-
cation of bound and free ligands in the vesicle but also for
the behavior of the effective adhesion strength.

Our calculations suggest that the use of ligand-receptor
pairs associated with a strong binding constantsas in the case
of the biotin-streptavidin paird would lead the vesicle-
substrate system into an equilibrium described by the one of
two limits of the allocation function of bound ligands for
Ea→`. Hence, there should basically be either no free
ligands in the vesicle or no free receptors on the substrate.

The equilibrium of the system can be found either by
finding the optimum number allocationssas is the case in the
presented modeld or by equilibration of chemical potentials.
The result is independent of the procedure. However, in a
possible experiment where one of the system parameters can
be continuously tuned, the pathway will depend on whether
each new state is associated with a constant chemical poten-
tial or a constant number of particles. Changing the size of
the contact zone by means of adjusting the osmotic condi-
tions of the buffer solution or influencing the binding
strength by changing the content of the buffer are two pos-
sible ways that could be used for exploring the equilibrium
adhesion of a single vesicle. As such processes are associated
with a constant number of ligands in the vesicle, the number
allocation functions should be employed to interpret the
measured changes. Manipulating parameters of the system
such asSc or Ea would, according to the presented calcula-
tions, be equivalent to moving along one of the lines pre-
sented in Fig. 5 and Fig. 6, respectivelysa detailed explana-
tion for construction of these figures and the derivation of
approximate solutions are provided in the Appendixd.

An important fact emerging from the model is that the
bending energy can be virtually omitted from the calcula-
tions. The bending energy is a function of the membrane
elastic modulusk and seldomly exceeds 10−5kBT per site on
the vesicle. On the other hand, the contribution of each
ligand in a vesicle is of the order of 1kBT. As the number of
ligands is very large, it is clear that the bending is not of
comparable magnitude. Hence, as long as the shape of the
vesicle is not that of the spherical cap, deformations of the
membrane are energetically inexpensive, provided that the
ratio between the surface area of the contact zone and the
free part of the vesicle remains unchanged. This explains the
stability of strongly deformed membranes balanced by an
agglomeration of ligand-receptor bonds at the edge of the
contact zone, as often observed in experiments on weakly

adhered vesicles. As the strength of adhesionsor the density
of bondsd increases and the spherical cap is approached, the
tension in the vesicle becomes large and unusual deforma-
tions become energetically expensive and unobservable. In-
deed, in the experiments where the shape of a vesicle is a
spherical cap, the contact zone is observed to be discoid with
no pronounced deformations whatsoeverf6g.

Due to the divergence of the bending energy, we were
able to identify a boundary minimum with respect to the size
of the contact zone. It leads to a thermodynamic equilibrium
in which the contact zone is maximized and the vesicle al-
ways assumes the shape of a spherical cap, as seen in some
experimentsf6g. Depending on the coverage of the substrate
and the density of ligands, the number of bound molecules
can be determined by Eq.s5d or one of its approximate so-
lutions Nb

sig or Nb
lin ssee the Appendixd.

Despite the predicted existence of the boundary mini-
mum, there are some experimental situations where the
vesicle appears to be in its equilibrium state without assum-
ing the shape of the spherical capf5g. The adhesion process
associated with such a state is usually slow and stepwise, and
should be expected when the probability for bond formation
is reduced, due to a low coverage or a low fraction of ligands
in the vesicle. Technically, the slow equilibration leads to a
relaxation of the free energy with respect to the number of
ligands in the contact zone but not with respect to the size of
the contact zone. In this constrained equilibrium, the alloca-
tion functions resulting from the minimization are still valid,

FIG. 5. The number of bound ligands as a function of the size of
the adhesion plate for a set of binding strengthssEa

=0.1,2.5,5.0,7.5,10.0d, for constantSt andrr. The arrows indicate
the direction of the increase of the binding strength. The total num-
ber of ligands is indicated above the left and right panels, respec-
tively. The regions in the graph whereNb has solutions are depicted
with white background, whereas the remaining part of the param-
eter space is shown in gray. The approximateNb

lin solution sshort
dotted linesd is presented together with the real solutionsfull linesd.
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but the size of the contact zone is not determined by the
bending divergence but by factors such as the nonspecific
interaction potential, shape fluctuations, and the probability
for bond formation. The shape of the vesicle in this con-
strained equilibrium can be determined by the use of a con-
tinuum modelf11g where the bending energy must be mini-
mized for a chosen size of the adhesion zone. However, it is
important to emphasize that the proposed allocations can be
applied to both the thermodynamic and the constrained equi-
libria.

The densities of bound and free ligands in the contact
zone are found to be responsible for the strength of the ef-
fective adhesive potential. This potential, in thermodynamic
equilibrium, is equivalent to the spreading pressure obtained
from the Young-Dupré law for liquid droplets. However, in
the constrained equilibrium, the contact angle of the vesicle
with the substrate is not well defined and so the Young-
Dupré law is not valid. Under these circumstances, the effec-
tive adhesion strength and the shape of the vesicle can be
calculated by minimizing the bending energy of a vesicle for
a given size of the contact zone by the methods employed in
continuous models. The effective adhesion strength of con-
strained equilibria is dominated by nonspecific interactions.
Hence, thev originating from the current model should be
interpreted as the bond contribution to the total effective ad-
hesion strength.

The calculation of the effective adhesion strength pro-
vides a bridge between models based on a continuous poten-

tial and those based on discrete specific binding. As shown in
f26g, pulling on vesicles in constrained equilibria will result
in continuous shape deformations, whereas pulling on
vesicles in thermodynamic equilibrium results in tether for-
mation f27g. Thus, the knowledge of the effective potential
enables the determination of the vesicle shapesfrom continu-
ous modelsd and the number of bonds in the contact zone
sfrom the current discrete modeld f28g. In addition, the model
outlined herein can be used for the identification of the main
mechanisms in which a competitive bindersan antibodyd,
injected into the surrounding buffer, acts on specifically ad-
hered vesiclesf29g. In conclusion, although the presented
model is relatively simple, it produces practical results that
are widely applicable to the interpretation of experimental
data.
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APPENDIX

In this appendix we present different aspects of Eq.s5d in
terms of their dependence on the size of the contact zone and
the binding strength of the ligand receptor pair. The results of
this discussion will be summarized in a table at the end of
the Appendix.

1. Dependence of the allocation functions on the size of the
adhesion plate

The size of the contact zone can vary from zerosfor
spherical vesiclesd to a maximum one half of the total area
scompletely deflated vesicled. Due to this geometrical con-
straint onSc and the two classes of equilibria for vesicle
adhesion, two distinct types of behavior of the allocation
function for the number of bound ligands can be identified in
Fig. 5 sleft and right panels, respectivelyd. Several combina-
tions of system parameters result in linear regimes ofNb that
can be approximated by the following expression:

Nb
lin =

seEa + 1dNt

seEa − 1dNt + 2St
rrSc. sA1d

EquationsA1d is obtained by connecting the zero pointsNb

=Sc=0d with the point at whichNb=0.5Nt and is presented in
Fig. 5 with dotted lines.

LinearizingNb can also be performed by using the slopes
at Sc=0:

Nb
0 ; U ]Nb

]Sc
U

Sc=0
Sc =

eEaNt

St − seEa − 1dNt
rrSc. sA2d

AlthoughNb
0 is a valid approximation of Eq.s5d, the approxi-

mation given by Eq.sA1d is found to be the simplest expres-

FIG. 6. The allocation function of bound ligands as a function of
the ligand-receptor binding strength. The real solutionNb and the
approximateNb

sig are presented with full and short dashed lines,
respectively. Points used for the expansion can be associated with
the intersection ofNb curves with the long dashed lines. The curves
denoted byA belong to the caseSc,Sc

* and are a representative of
a set of receptor-dominated equilibria. Curves denoted byB belong
to the case whenSc.Sc

* and are a construction of ligand-dominated
equilibria.
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sion that accurately describes the real solution from Eq.s5d
for the widest choice of system parameters.

a. Sc
* ,0.5St regime

This regime is presented in the left panel of Fig. 5 where
the boundaries of the region where solutions forNb can be
found are the horizontalNt line and therrSc line slimits of Nb
whenEa→`d. As the binding strength increases, theNb al-
location function approaches both limits. However, a smooth
transition from the ligand-dominated to the receptor-
dominated type of equilibrium takes place. Hence, for strong
binding se.g.,Ea.5 in the case of the parameters chosen in
Fig. 5d, the Nb allocation function is virtually cornered be-
tween the two limits, with a crossover atSc

* .
While Sc

* ,0.5St, the Nb functions are linear for small
binding strengthssEa!1d. Here,Nb

lin matches the real solu-
tion very well. For intermediate binding strengths,Nb

lin is a
good approximation only at small sizes of the contact zone.
For large binding strengthsNb

lin→rrSc, so it again becomes
representative of the realNb suntil theNt line is intercepted at
Sc

*d, as can be seen in the left panel of Fig. 5.

b. Sc
* .0.5St regime

In this regime the system is always in the receptor-
dominated equilibriumsright panel in Fig. 5d. Thus the re-
gion where solutions forNb can be found is limited only by
therrSc line. Furthermore,Nb is almost linear for any choice
of parameters. Increasing the binding strength causes the
saturation ofNb to therrSc line in the whole range of avail-
able sizes of the contact zonese.g., curves withEa.5 cannot
be distinguished from therrSc boundaryd.

Regardless of the binding strength, whenSc
* .0.5St, the

maximum deviation ofNb
lin from Nb is found to be less than

5% and arises for binding strengthsEa>1 at small sizes of
the contact zone. It is in this limit that the approximation
given byNb

0 can be used as a substitute.

2. Dependence of the allocation functions on the binding
strength of the ligand-receptor pair

In this presentation, the concentrations of the ligands and
the receptors are preset, as isSc

* . Furthermore, the size of the
contact zone must be chosen. The relation between these
system parameters, as shown in previous sections, deter-
mines whether the system will be in a ligand-dominated or a
receptor-dominated equilibrium. Thus whenNb is plotted as
a function of the ligand-receptor binding strength, the entire
resulting curve is a set of only one type of equilibriasFig. 6d.
In this case, for small to intermediate values of the binding
strength, the allocation function for bound ligands experi-
ences rapid almost linear growth that continuously deviates
into a saturation regime defined by one of the two limits at
Ea→`. In principle, the linear regime can be characterized
by expanding around the inflection point of the allocation
functions that are almost symmetrical sigmoids. Due to the
complexity of such expressions, a simple but successful pro-
cedure has been undertaken for determining the alternative
expansion point, the coordinates of which will be denoted as

Nb
M and Ea

M. The ordinateNb
M is determined as the value

intermediate between the limits of the allocation function at
−` and +̀ , with Nb→0, whenEa→−`. The abscissaEa

M is
the binding strength at which theNb function intersects the
Nb

M valuessee Fig. 6d. However, for both types of equilibria,
it is possible to approximate the linear regime of the alloca-
tion function by

Nb > Nb
sig = Nb

MbksEa − Ea
Md + 1c. sA3d

Due to different limits at +̀ , the values ofNb
M, Ea

M, andk
will depend on whether the system is in the ligand- or in the
receptor-dominated equilibrium.

a. Receptor-dominated equilibria

The coordinates of the expansion point are found to be

Nb
M =

rrSc

2
, Ea

M = ln
2St − 2Nt − rrSc

2Nt − rrSc
, sA4ad

k =
s2Nt − rrScds2Nt + rrSc − 2Std

8Nt
2 − 8NtSt + 2rrScSt

. sA4bd

For curves representing receptor-dominated equilibriascurve
A in Fig. 6d, increasing the number of ligands in the vesicle
sNtd while keeping the coverage densitysrrd and the size of
the contact zonesScd constant, results in a shift ofEa

M to
smaller energies. AsNb must converge to a constantly main-
tained value ofrrSc, and the slope ofNb

sig is not significantly
altered,Nb also converges to its limiting value at smaller
values ofEa. On the other hand, maintainingNt constant
while increasing eitherrr or Sc leads to a convergence ofNb
at increased values, which considerably increases the slopek.
Nevertheless, the saturation ofNb is reached more slowly in
both cases. Interestingly, an increase ofrr sat constantNt and
Scd results in a shift ofEa

M to smaller values, whereas an
increase ofSc sat constantNt andrrd has the opposite effect.

b. Ligand-dominated equilibria

The coordinates of the expansion point are found to be

Nb
M =

Nt

2
, Ea

M = ln
2St − Nt − 2rrSc

Nt − 2rrSc
, sA5ad

k =
sNt − 2rrScdsNt + 2rrSc − 2Std

8rr
2Sc

2 − 8rrScSt + 2NtSt

. sA5bd

For this type of equilibriumscurve B in Fig. 6d adding re-
ceptors to the surface or increasing the size of the contact
zone, while maintainingNt constant, results in convergence
of Nb to Nt at smaller values ofEa. Although the slope ofNb

sig

remains almost unaltered, raising eitherrr or Sc results in a
shift of Ea

M to smaller values. Preparing vesicles with higher
ligand concentration while keeping the size of the contact
zonese.g., the reduced volume of the vesicled or the substrate
composition constant, will increase the saturation level ofNb.
In this case, the convergence is achieved at higher values of
bothEa andEa

M. Nevertheless, the slopek is increased with a
higher content of ligands.
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3. Relevance to applications

Together with the convergence limits, which are usually
reached at ligand-receptor binding strengths of the order of
10kBT, the developed approximations cover most of the pa-
rameter space in whichNb should be determined. As can be
seen from Table III, expansions of the typeNb

sig are good
approximations toNb and can be used when the somewhat
simpler Nb

lin is inappropriate. This is particularly important
for the intermediate range of the ligand-receptor binding
strengths. In addition, for low coverage or small contact
zones, the slope coefficientk in Nb

sig can be considerably
simplified.

The allocation function for free ligands in the contact
zonesNfd and the allocation function for the total number of
free ligands in the vesiclesNfreed share the sameEa

M. Hence,
their expansions can be calculated by the use of the density
equations3d, in which Nb should be replaced by the appro-
priateNb

sig.
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TABLE III. Regions of parameters for the applicability of dif-
ferent approximate relations of the allocation function of the bound
ligands. The critical size of the contact zone is a ratio between the
total number of ligands in the vesicle and the density of receptors
on the substratesSc

* =Nt /rrd. Sc,Sc
* is indicative of a receptor-

dominated type of equilibrium whereasSc.Sc
* results in a ligand-

dominated equilibrium.Nb
lin is defined in text by Eq.sA1d. Nb rec

sig and
Nb lig

sig are defined by Eq.sA3d. The subscripts lig and rec signify the
use of parameters given in Eqs.sA4d and sA5d, respectively.

Ea

Sc
* .0.5St Sc

* ,0.5St

Sc,Sc
* Sc,Sc

* Sc.Sc
*

Very low Nb
lin→rrScNt /St

Low-medium Nb
lin Nb rec

sig Nb lig
sig

Strong Nb
lin→rrSc Nt
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